Latihan Soal Bilangan Berpangkat Pecahan Bimbel Jakarta Timur - Majalah Bimbel | Les | Pelajaran Sekolah

Latihan Soal Bilangan Berpangkat Pecahan Bimbel Jakarta Timur

0

Bilangan berpangkat pecahan adalah konsep matematika yang melibatkan penggunaan pecahan sebagai pangkat. Memahami konsep ini penting karena sering muncul dalam berbagai soal matematika, baik di sekolah maupun dalam kehidupan sehari-hari. Dalam artikel ini, kita akan menjelajahi 5 latihan soal bilangan berpangkat pecahan beserta pembahasan dan jawabannya.

Berikut adalah beberapa latihan soal tentang bilangan berpangkat pecahan beserta pembahasan dan jawabannya:

Soal 1

Soal: Sederhanakan (278)23\left( \frac{27}{8} \right)^{\frac{2}{3}} 

Pembahasan:

  1. Pecahan 23\frac{2}{3} menunjukkan bahwa kita akan mengakar pangkat tiga (akar kubik) kemudian mengkuadratkan hasilnya.
  2. Misalkan a=(278)23a = \left( \frac{27}{8} \right)^{\frac{2}{3}} .
  3. Kita dapat memecahnya menjadi dua langkah: a=((278)13)2a = \left( \left( \frac{27}{8} \right)^{\frac{1}{3}} \right)^2 
  4. Akar pangkat tiga dari 278\frac{27}{8} adalah 32\frac{3}{2} 
    a=(32)2a = \left( \frac{3}{2} \right)^2 
  5. Kuadratkan 32\frac{3}{2} 
    a=94a = \frac{9}{4}

Jawaban: 94\frac{9}{4}

Soal 2

Soal: Sederhanakan 642364^{\frac{2}{3}} 

Pembahasan:

  1. Pecahan 23\frac{2}{3} menunjukkan bahwa kita akan mengakar pangkat tiga (akar kubik) kemudian mengkuadratkan hasilnya.
  2. Misalkan a=642
  3. Kita dapat memecahnya menjadi dua langkah: a=(6413)2a = \left( 64^{\frac{1}{3}} \right)^2 
  4. Akar pangkat tiga dari 64 adalah 4: a=42a = 4^2 
  5. Kuadratkan 4: a=16a = 16 

Jawaban: 16

Soal 3

Soal: Sederhanakan (1681)34\left( \frac{16}{81} \right)^{-\frac{3}{4}} 

Pembahasan:

  1. Pecahan 34-\frac{3}{4} menunjukkan bahwa kita akan mengakar pangkat empat (akar kuart) kemudian mengkuadratkan hasilnya, dan tanda negatif menunjukkan bahwa kita akan mengambil invers atau kebalikan.
  2. Misalkan a=(1681)34a = \left( \frac{16}{81} \right)^{-\frac{3}{4}}.
  3. Kita dapat memecahnya menjadi dua langkah: a=((1681)14)3a = \left( \left( \frac{16}{81} \right)^{\frac{1}{4}} \right)^{-3} 
  4. Akar pangkat empat dari 1681\frac{16}{81} adalah 23\frac{2}{3}: a=(23)3a = \left( \frac{2}{3} \right)^{-3} 
  5. Ambil invers dan pangkat tiga: a=(32)3=278a = \left( \frac{3}{2} \right)^3 = \frac{27}{8}

Jawaban: 278\frac{27}{8}

Soal 4

Soal: Hitung nilai dari (32x5y3)35\left( 32x^5y^{-3} \right)^{\frac{3}{5}} 

Pembahasan:

  1. Misalkan a=(32x5y3)3
  2. Distribusikan pangkat 35\frac{3}{5}  ke dalam setiap faktor: a=3235(x5)35(y3)35a = 32^{\frac{3}{5}} \cdot (x^5)^{\frac{3}{5}} \cdot (y^{-3})^{\frac{3}{5}}
  3. Sederhanakan setiap faktor: 3235=23=832^{\frac{3}{5}} = 2^3 = 8 
    (x5)35=x3(x^5)^{\frac{3}{5}} = x^3 
    (y3)35=y9/5(y^{-3})^{\frac{3}{5}} = y^{-9/5} 
  4. Gabungkan hasil-hasil tersebut: a=8x3y9/5a = 8x^3y^{-9/5} 

Jawaban: 8x3y9/58x^3y^{-9/5} 

Soal 5

Soal: Sederhanakan (9a2b416c8)12\left( \frac{9a^2b^{-4}}{16c^8} \right)^{\frac{1}{2}}.

Pembahasan:

  1. Misalkan a=(9a2b416c8)12a = \left( \frac{9a^2b^{-4}}{16c^8} \right)^{\frac{1}{2}} 
  2. Distribusikan pangkat 12\frac{1}{2} ke dalam setiap faktor: a=(916)12(a2)12(b4)12(c8)12a = \left( \frac{9}{16} \right)^{\frac{1}{2}} \cdot (a^2)^{\frac{1}{2}} \cdot (b^{-4})^{\frac{1}{2}} \cdot (c^8)^{\frac{1}{2}}
  3. Sederhanakan setiap faktor: (916)12=34\left( \frac{9}{16} \right)^{\frac{1}{2}} = \frac{3}{4} (a2)12=a(a^2)^{\frac{1}{2}} = a 
    (b4)12=b2(b^{-4})^{\frac{1}{2}} = b^{-2} 
    (c8)12=c4(c^8)^{\frac{1}{2}} = c^4 
  4. Gabungkan hasil-hasil tersebut: a=34ab2c4a = \frac{3}{4}ab^{-2}c^4 

Jawaban: 34ab2c4\frac{3}{4}ab^{-2}c^4 

Soal 6

Hitunglah nilai dari (1/4)^(2/3)!

Pembahasan

Untuk menghitung nilai (1/4)^(2/3), kita dapat menggunakan aturan pemangkatan pecahan, yaitu:

(a/b)^(c/d) = (a^c)/(b^d)

Dalam soal ini, kita memiliki:

  • a = 1
  • b = 4
  • c = 2
  • d = 3

Sehingga, kita dapat menghitung: (1/4)^(2/3) = (1^2)/(4^(2/3)) = 1/(4^(2/3))

Untuk menghitung 4^(2/3), kita dapat menggunakan kalkulator atau tabel pangkat. Hasilnya adalah: 4^(2/3) ≈ 2,5198

Jadi, nilai (1/4)^(2/3) ≈ 1/2,5198 ≈ 0,3967.

Jawaban

Nilai dari (1/4)^(2/3) adalah sekitar 0,3967.

Soal 7

Hitunglah nilai dari (8^(1/3))^(2/5)!

Pembahasan

Untuk menghitung nilai (8^(1/3))^(2/5), kita dapat menggunakan aturan pemangkatan pecahan, yaitu:

(a^b)^c = a^(b*c)

Dalam soal ini, kita memiliki:

  • a = 8^(1/3)
  • b = 2
  • c = 2/5

Sehingga, kita dapat menghitung: (8^(1/3))^(2/5) = 8^((1/3)*(2/5)) = 8^(2/15)

Untuk menghitung 8^(2/15), kita dapat menggunakan kalkulator atau tabel pangkat. Hasilnya adalah: 8^(2/15) ≈ 1,2214

Jadi, nilai (8^(1/3))^(2/5) ≈ 1,2214.

Jawaban

Nilai dari (8^(1/3))^(2/5) adalah sekitar 1,2214.

Soal 8

Hitunglah nilai dari (1/16)^(3/4)!

Pembahasan

Untuk menghitung nilai (1/16)^(3/4), kita dapat menggunakan aturan pemangkatan pecahan, yaitu:

(a/b)^(c/d) = (a^c)/(b^d)

Dalam soal ini, kita memiliki:

  • a = 1
  • b = 16
  • c = 3
  • d = 4

Sehingga, kita dapat menghitung: (1/16)^(3/4) = (1^3)/(16^(3/4)) = 1/(16^(3/4))

Untuk menghitung 16^(3/4), kita dapat menggunakan kalkulator atau tabel pangkat. Hasilnya adalah: 16^(3/4) ≈ 4

Jadi, nilai (1/16)^(3/4) ≈ 1/4 = 0,25.

Jawaban

Nilai dari (1/16)^(3/4) adalah 0,25.

Soal 9

Hitunglah nilai dari (2^(1/3))^(5/2)!

Pembahasan

Untuk menghitung nilai (2^(1/3))^(5/2), kita dapat menggunakan aturan pemangkatan pecahan, yaitu:

(a^b)^c = a^(b*c)

Dalam soal ini, kita memiliki:

  • a = 2^(1/3)
  • b = 5
  • c = 2/1 = 2

Sehingga, kita dapat menghitung: (2^(1/3))^(5/2) = 2^((1/3)*(5/2)) = 2^(5/6)

Untuk menghitung 2^(5/6), kita dapat menggunakan kalkulator atau tabel pangkat. Hasilnya adalah: 2^(5/6) ≈ 1,8478

Jadi, nilai (2^(1/3))^(5/2) ≈ 1,8478.

Jawaban

Nilai dari (2^(1/3))^(5/2) adalah sekitar 1,8478.

Soal 10

Hitunglah nilai dari (3^(2/3))^(1/4)!

Pembahasan

Untuk menghitung nilai (3^(2/3))^(1/4), kita dapat menggunakan aturan pemangkatan pecahan, yaitu:

(a^b)^c = a^(b*c)

Dalam soal ini, kita memiliki:

  • a = 3
  • b = 2/3
  • c = 1/4

Sehingga, kita dapat menghitung: (3^(2/3))^(1/4) = 3^((2/3)*(1/4)) = 3^(1/6)

Untuk menghitung 3^(1/6), kita dapat menggunakan kalkulator atau tabel pangkat. Hasilnya adalah: 3^(1/6) ≈ 1,1224

Jadi, nilai (3^(2/3))^(1/4) ≈ 1,1224.

Jawaban

Nilai dari (3^(2/3))^(1/4) adalah sekitar 1,1224.

Kesimpulan

Dalam artikel ini, kita telah mempelajari 5 latihan soal bilangan berpangkat pecahan beserta pembahasan dan jawabannya. Memahami konsep bilangan berpangkat pecahan dan menguasai teknik penyelesaiannya sangat penting dalam matematika. Latihan soal-soal seperti ini dapat membantu Anda meningkatkan pemahaman dan keterampilan dalam menghadapi masalah-masalah serupa. Terus berlatih dan menggali pemahaman Anda tentang topik ini, dan Anda akan semakin mahir dalam menyelesaikan soal-soal bilangan berpangkat pecahan.

Posting Komentar

0Komentar
* Please Don't Spam Here. All the Comments are Reviewed by Admin.
Posting Komentar (0)

#buttons=(Accept !) #days=(20)

Our website uses cookies to enhance your experience. Learn More
Accept !

Terima kasih sudah membaca 🙏

Dukung kami agar terus berkembang dengan menekan Like, Follow, atau Share halaman Facebook kami 💙